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a b s t r a c t

Conservation planning of critical habitats for wildlife species at risk is a priority topic that requires the
knowledge of how animals select and use their habitat, and how they respond to future developmen-
tal changes in their environment. This paper explores the role of a habitat-modeling methodological
approach, agent-based modeling, which we advocate as a promising approach for ecological research.
Agent-based models (ABMs) are capable of simultaneously distinguishing animal densities from habitat
quality, can explicitly represent the environment and its dynamism, can accommodate spatial patterns
of inter- and intra-species mechanisms, and can explore feedbacks and adaptations inherent in these
systems. ABMs comprise autonomous, individual entities; each with dynamic, adaptive behaviors and
heterogeneous characteristics that interact with each other and with their environment. These interac-
tions result in emergent outcomes that can be used to quantitatively examine critical habitats from the
individual- to population-level. ABMs can also explore how wildlife will respond to potential changes
in environmental conditions, since they can readily incorporate adaptive animal-movement ecology in

a changing landscape. This paper describes the necessary elements of an ABM developed specifically for
understanding wildlife habitat selection, reviews the current empirical literature on ABMs in wildlife

ecology and management, and evaluates the current and future roles these ABMs can play, specifically
with regards to scenario planning of designated critical habitats.

© 2011 Elsevier B.V. All rights reserved.
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. Introduction

Wildlife species are under tremendous pressure from both
atural and anthropogenic influences, including climate change,
ollution, and habitat loss and fragmentation. Identification and
rotection of critical habitats is central to the management of
pecies at risk, and the need to designate habitats as critical for
pecies persistence is universally recognized by scientists, resource
anagers, and the general public. However, critical habitat desig-

ations will be challenged if they affect stakeholders who bear the
ost opportunity costs of economic activity (Rosenfeld and Hatfield,
006). As a result, political decision-makers involved in conserva-
ion planning of critical habitats face difficult challenges when it
omes to balancing economic development and the maintenance
f a healthy environment.

Conservation planning is the process of locating, configuring,
mplementing and maintaining areas that are managed to pro-

ote the persistence of biodiversity (Margules and Pressey, 2000).
ffective conservation planning also acknowledges the complexity
mposed by dynamic updating of priorities for both biodiver-
ity patterns and processes as decisions are made. For instance,
nticipated changes to species distributions in response to envi-
onmental and/or landscape change will influence decisions about
onservation design (Pressey et al., 2007). Scenario planning is
ne important component of conservation planning, and is nec-
ssary for assisting the development of knowledge and planning
ools required by managers and decision makers. A technique for

aking decisions in the face of uncontrollable, irreducible uncer-
ainty, scenario planning offers managers a method for creating

ore resilient conservation policies by considering multiple pos-
ible futures, both socio-economic and ecological (Peterson et al.,
003). Benefits of using scenario planning include increased under-
tanding of key uncertainties, the incorporation of alternative
erspectives into conservation planning, and greater resilience of
ecisions to surprise. This approach has direct implication for the
rocess of delineating critical habitats for species at risk, since in
ddition to determining wildlife habitat space and usage, conserva-
ion planning of wildlife habitats also involves the analysis of future
abitat-linked population demographics under various land-use
evelopment scenarios.

To better inform management in the determination of criti-
al habitat, wildlife research has long focused on understanding
ildlife use of habitats and, when combined with the availability

f resources, what animals select and avoid on the landscape, and
ow, and why they select the features that they do (Morris et al.,
008). Specifically, information on the wildlife’s adaptive behav-

ors of habitat selection, movement ecology, and its responses to a
ynamic environment are integral to successful conservation and
cenario planning. For instance, an examination of the underlying
rocesses and mechanisms of habitat-selection by the individual
ill provide the ability to distinguish habitat use based on adaptive
references, maladaptive preferences (ecological traps), or non-

deal habitat selection (i.e., the fitness consequences of habitat

election; for an example see Arlt and Pärt, 2007). This distinction
s of considerable value in the ranking of habitat types for con-
ervation planning. Next, the movement ecology of the organism,
hich includes the internal state, motion capacity, and naviga-

ion capacity of the individual, provides insight into how wildlife
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1554

are affected by matrix heterogeneity, and can generate emergent
properties that improve our understanding of the demographics of
stochastic, spatially structured populations (Revilla and Wiegand,
2008). Because the dynamic nature of the environment plays such
an influential role in affecting organism state, behavioral decisions,
and motion, a representation of the animal’s actual environment
in a spatially explicit manner in habitat modeling can improve
the effectiveness of conservation planning, since it can highlight
the causal links between organism movement and environmental
change (Nathan et al., 2008). Finally, the capacity to accommodate
the dynamism of the environment, the spatial patterns of inter-
and intra-species mechanisms, and the feedbacks and adaptations
inherent in these systems can allow one to explore how animals
will respond to and be affected by future and novel changes in their
landscape, which is an essential criterion for scenario planning.

Management of wildlife therefore requires the stewardship
and/or conservation of cognizant and adaptive individuals that
interact with one another and their environment, the combina-
tion of which comprises very diverse and dynamic populations. It
is this diversity and dynamic nature that makes populations robust
and capable of handling perturbations in environmental conditions,
and therefore this information should not be overlooked. What is
needed is a thorough understanding of the individual behaviors
and motivations of wildlife involved in habitat selection and use,
and the ability to utilize and project these fitness-maximizing deci-
sion and movement rules in a spatio-temporal context to assess
how animals will respond to future changes in their environ-
ment. A range of habitat models are available and are capable of
addressing one or more of these issues independently or in con-
cert; for instance, resource-selection models (e.g., Johnson et al.,
2004), dynamic optimization models (e.g., Chubaty et al., 2009),
and population-level land-use change models (e.g., Copeland et al.,
2009), to name but a few. Our intent is not to conduct a system-
atic comparison of each approach as they often complement, as
opposed to supersede one another. Rather, we review here a further
methodology that can accommodate spatio-ecological informa-
tion, and which links detailed knowledge of animal behavior
and movement with explicit and dynamic environment variables:
agent-based modeling.

Agent-based models (ABMs) are computational simulation tools
cable of incorporating intelligence, by combining elements of learn-
ing, adaptation, evolution, and fuzzy logic. Specifically, ABMs rely
on a bottom-up approach that begins by explicitly considering the
components of a system (i.e., individual agents) and tries to under-
stand how the system’s properties emerge from the interactions
among these components (Grimm, 1999; Grimm et al., 2005). A
community of agents acts independently of any controlling intel-
ligence, they are goal-driven and try to fulfill specific objectives,
they are aware of and can respond to changes in their environment,
they can move within that environment, and they can be designed
to learn and adapt their state and behavior in response to stimuli
from other agents and their environment. This emphasis on interac-
tions between agents and their environment is what distinguishes
A.J. McLane et al. / Ecological Modelling 222 (2011) 1544–1556 1545
agent-based modeling (also referred to as individual-based models)
from other systemic modeling approaches (Marceau, 2008).

Over the past fifteen years, ABMs have been applied to address
a broad range of issues related to environmental resource man-
agement, such as water, forest, and agro-ecosystem management



1 l Mode

(
b
p
l
R
a
e
i
m
s
t
A
t
t
i

f
r
a
m
a
d
t
a
r
d

f
e
e
b
a
t
g
d
o
i
i
n
b
t
o
s
b
t
f
N
r
A
t
A
a
m
a
A

2
e

o
s
d
i
t

546 A.J. McLane et al. / Ecologica

see review by Bousquet and Le Page, 2004). ABMs have also
een extensively used in ecology to study species relationships,
opulation dynamics, and to understand how animals perceive,

earn and adapt to their environment (DeAngelis and Mooij, 2005).
ecently, ABMs have begun being used cross-disciplinarily to
ddress human-wildlife interactions and their management (An
t al., 2005; Anwar et al., 2007). The recent proliferation of ABMs
n ecological applications and specifically in the realm of animal

ovement and behavior (Wang and Grimm, 2007; Stillman, 2008)
uggests they could play a key role in understanding habitat selec-
ion and use for conservation planning. Further, the ability for
BMs to incorporate dynamic representations of the environment

hrough cellular automata (CA) also suggests a critical function for
hese models when it comes to future-scenario development and
mplementation of management strategies.

Due to the identifiable need in wildlife ecology and management
or the inclusion of individuality of wildlife species as adaptive,
esponsive entities, the use of an ABM as a tool for management is
dvantageous: dynamic interplay between agents is readily accom-
odated, realistic environmental conditions can be approximated,

nd hypothetical scenarios can be simulated. An ABM specifically
eveloped for use in the determination of critical habitat is one
hat explicitly incorporates individual fitness-seeking behaviors of
nimal movement in a spatially-realistic representation of the envi-
onment that is then subjected to alternate scenarios of land-use
evelopment.

This paper explores the role of ABMs in wildlife habitat selection
or the purpose of unifying different fields of study (i.e., behavioral
cology, animal-movement ecology, geographical information sci-
nce, and computational intelligence) into a cohesive realm for the
enefit of wildlife conservation planning, emphasizing the need for
multi-disciplinary approach. It is aimed specifically at those in

he disciplines of behavioral ecology, animal-movement ecology,
eography, and geocomputation, as well as on-site managers and
ecision makers responsible for the management and conservation
f wildlife and wildlife habitat. Increasingly, wildlife-management
s becoming more multidisciplinary in nature and marked by an
ncrease in stakeholder participation as it moves away from the
ear exclusive reliance on biological science and decision-making
y so-called experts (Riley et al., 2002). ABMs are an excellent
ool for wildlife-management, since they allow for the integration
f expertise from multiple disciplines, as well as the interests of
takeholders that fall outside of the core sciences. The paper begins
y first describing the fundamental elements required to develop
he specific wildlife-management ABM set forth in this paper,
rom the representation of space to the animal agent attributes.
ext, each key element is specifically addressed, with a thorough

eview of how ecologists have implemented it in their models.
summary of the trends is then provided, with an evaluation of

he models’ fit with the objectives of the wildlife-management
BM, and where future directions lie. The paper concludes with
description of the ecological data requirements needed to imple-
ent these ABMs, how the models can then be robustly evaluated,

nd the tools available to ecologists and managers to create
BMs.

. Critical components of agent-based models in wildlife
cology and management

The diversity of ABMs and their flexibility to include any number

f species, behaviors, and environments allows for an impressive
uite of ecological relationships to be investigated, modeled, pre-
icted, and monitored through time. This dynamic ability lends

tself to management strategies, as long as special attention is given
o the development of the critical components of the ABM. These
lling 222 (2011) 1544–1556

critical components include environment representation, animal
behavior, animal movement, and animal memory and learning.

A survey of the literature used to investigate recent progress
in each of these four critical components with respect to the use
of ABMs in animal habitat selection for the purposes of wildlife
ecology and management is summarized in Table 1. This table pro-
vides a reference for each example from the literature, whereby
the reader can identify specifics pertaining to model category,
focal species, environment representation, animal behavior, ani-
mal movement, memory and learning, model purpose and location
of the study, if applicable. In the following sections, we expand on
these examples, highlight important concepts pertaining to each of
the critical components, and discuss future areas of development.

3. Representation of the environment

Essential to wildlife ecology and management through the use of
ABMs of habitat selection is the inclusion of some form of environ-
mental characterization. Agents interact with their environment
directly, and therefore the manner in which the environment is
represented can have a profound effect on behavior and movement
patterns of those agents. In its most basic form, the environ-
ment in a wildlife-oriented ABM includes where and within what
bounds the agent exists spatially. The way the environment is rep-
resented is dependent on the research question being investigated;
however, several important concepts from the literature can be
highlighted: (i) the representation of environment as real-world
or artificially-created, (ii) the representation of environment as a
discrete (object-based) or continuous (cell-based) entity, and (iii)
whether the environment is static or dynamic. Each of these con-
cepts is considered below.

3.1. Real world or artificial

The environment in habitat-selection ABMs used for wildlife
ecology and management has been represented both realistically
and artificially during the past decade. Realistic environment rep-
resentations in an ABM have a Cartesian coordinate system from
an identifiable study area, with the parameters of the projection
and datum maintained within the model. In addition, these models
have cell values or object attributes either modeled from empirical
relationships or recorded (either indirectly through remote sensing
or directly from in situ measurements) from the location. Realistic
environment representations are often imported from geographic
information systems (GIS), and are used when researchers want
to answer ecological questions specific to a certain geographic
area, or compare their model results to empirical data collected
at a specific location. For example, Alderman et al. (2005) repre-
sented the environment realistically in their ABM for modeling
the effects of dispersal and landscape configuration on Eurasian
nuthatch (Sitta europaea) populations. Their program, PatchMap-
per, combined a nuthatch population simulator with a 200 × 200
grid-based representation of habitat quality, which was imported
from a GIS. Alderman and Hinsley (2007) further developed this
model to include the realistic representation of topography using a
digital elevation model (DEM), to study the effect of topography on
dispersal patterns on nuthatches. Similarly, Metsaranta (2008) used
a realistic environment for woodland caribou (Rangifer tarandus)
by creating a grid-based land-cover classification, converted from
a vector-based forest resource inventory. The land-cover classifica-

tion was further processed into seasonal habitat-preference values,
which were determined by a compositional analysis.

Artificial environment representations may have either a Carte-
sian coordinate system with projection and datum parameters or
modeled/recorded values from a known location, but not both. Arti-
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Table 1
Examples from literature showing the use of ABMs to aid in wildlife ecology investigations. Acronyms under Environment correspond to the type of environment representation, i.e., Artificial (A) or Realistic (R), Cell-Based (C),
Object-Based (O), Dynamic (D) or Static (S), Biotic Factors (BF), and Abiotic Factors (AF). Acronyms under Animal Behavior correspond to Habitat Selection (HS), Foraging (F), Reproduction (R), and Dispersal (DI). Acronyms under
Animal Movement correspond to Random Walk (RW), Biased Random Walk (BRW), Correlated Random Walk (CRW), Correlated Habitat Dependent Walk (CHDW), Levy Flights (LF), and Behavior Based (BB). Acronyms under
Purpose correspond to Animal Population and Behavior Elucidation (APBE), Animal Behavior Elucidation (ABE), and Wildlife Management (WM).

Model category Focal species Environment Animal
behavior

Animal
movement

Memory and
learning

Purpose Location Author/year

Spatially-implicit,
Mechanistic

Callinectes sapidus (Blue Crab) A-C-D-BF HS; F; DI RW None ABE Chesapeake Bay, USA Hovel and Regan (2008)

Generic Grazing Species A-C-D-BF HS; F LF None ABE Undefined Mouissie et al. (2008)
Generic Species A-C-S-BF HS; DI LF None APBE Undefined Gauestad and Mysterud (2005)
Generic Predator/Prey A-C-D-BF HS CRW Episodic ABE Undefined Gras et al. (2009)
Sorex araneus (Common Shrew) A-C-D-BF HS; R; DI CHDW None APBE Undefined Wang and Grimm (2007)
Canis latrans (Coyote) A-C-S-BF HS; R; DI CHDW None WM Undefined Conner et al. (2008)
Generic Foraging Species A-C-D-BF HS; F BRW; RW Reference ABE Undefined Nonaka and Holme (2007)

Spatially-implicit,
Behavior-based

Salmo spp. (Salmonids) A-C-D-BF-AF HS; F BB None ABE Undefined Railsback and Harvey (2002)

Generic Foraging Species A-C-S-BF HS; F; R BB None ABE Undefined Hancock et al. (2006)
Generic Foraging Species A-C-S-BF HS; F BB None ABE Undefined Rands et al. (2004)
Branta leucopsis; Branta bernicla
(Barnacle Geese; Brent Geese)

A-O-D-BF HS; F; R BB None APBE Various locations in Europe Pettifor et al. (2000)

Rattus norvegicus (Lab rat) A-O-D-BF-AF HS; F BB Episodic;
Reinforcement

ABE Undefined Butz and Hoffmann (2002)

Generic Homing Species A-O-S-AF HS BB Reference;
Episodic;
Hebbian

ABE Undefined Cruse and Hubner (2008)

Generic Predator Species A-O-S-BF HS; F BB None ABE Undefined Grand (2002)
Canis latrans (Coyote) A-O-S-BF HS; DI; R BB None ABE Undefined Pitt et al. (2003)

Spatially-explicit,
Mechanistic

Rangifer tarandus (Woodland
Caribou)

R-C-O-S-BF-AF HS RW; CHDW None ABE Manitoba, Canada Metsaranta (2008)

Sitta europaea (Eurasian Nuthatch) R-C-D-BF-AF HS; R; DI CRW None ABE Eastern England, UK Alderman et al. (2005)
Sitta europaea (Eurasian Nuthatch) R-C-S-BF-AF HS; R; DI CRW None ABE Cambridgeshire, UK Alderman and Hinsley (2007)
Sciurus carolinensis (Squirrel) R-C-S-BF-AF HS; DI CRW None ABE Western Kentucky, USA Robinson and Graniero (2005)
Canis lupus (Wolf) R-C-S-BF-AF HS; F; DI CRW None WM Banff National Park, Canada Musiani et al. (2010)
Xanthocephalus xanthocephalus;
Barbastella barbastellus

R-O-S-BF HS; F; DI CRW None WM Calumet, Illinois; Southwest England Bennett et al. (2009)

(Yellow-Headed Blackbirds;
Barbestelle Bats)

R-O-S-BF HS; F; DI CRW None WM Calumet, Illinois; Southwest England Bennett et al. (2009)

Panthera tigris (Tiger) R-O-S-BF HS; F; R; DI CRW None WM Teari Forest, Nepal Ahearn et al. (2001)
Lynx lynx (Eurasian Lynx) R-C-S-BF HS; DI CHDW Episodic WM Jura Mountains, Switzerland Kramer-Schadt et al. (2004)
Ursus arctos (Brown Bears) R-C-S-BF HS; R; DI CHDW None APBE Central Austria Wiegand et al. (2004)
Puma concolor coryi (Panther) R-C-S-BF-AF HS; D CHDW Reference;

Episodic
WM Florida, USA Cramer and Portier (2001)

Alces alces (Moose) R-O-D-BF-AF HS; F; DI CHDW None WM Laurentides Wildlife Reserve, Canada Grosman et al. (2009)

Spatially-explicit,
Behavior-based

Haematopous ostralegus
(Oystercatcher)

R-C-D-BF HS; F BB Episodic WM Devon, England Goss-Custard and Stillman (2008)

Brant leucopsis (Barnacle Geese) R-C-D-BF HS; F; R; M BB Reference ABE Helgeland, Norway Kanarek et al. (2008)
Sardinops melanostictus (Japanese
sardine)

R-C-D-BF-AF HS; F; R; M BB Episodic; ANN ABE Central and Southern Japan Okunishi et al. (2009)

Cervus elaphus (Elk) R-C-S-BF-AF HS; F; DI BB Reference;
Episodic

APBE Yellowstone National Park, USA Bennett and Tang (2006)

Cervus elephus nelsoni (Elk) R-C-S-BF-AF HS; DI BB Reference ABE New Mexico, USA Rupp and Rupp (2010)
Gadus morhua (Larval Cod) R-O-D-BF-AF HS; F BB None ABE Georges Bank, USA Kristiansen et al. (2009)
Gadus morhua (Larval Cod) R-O-D-BF-AF HS; F; DI BB None ABE Moskenesgrunnen, Norway Filksen et al. (2007)
Anser brachyrhynchus (Pink-Footed
Geese)

R-O-D-BF-AF HS; F; M BB None ABE Northern Europe Duriez et al. (2009)

Marmota marmota (Alpine
Marmot)

R-O-S-BF HS; F; R; DI BB None APBE Berchtesgaden National Park, Germany Stephens et al. (2002)
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cial representations are useful when a specific geographic location
s not necessary for the investigation, such as when empirical data
re not sufficient for direct comparison, or when more of a focus is
eing placed on behavioral rules as opposed to the dynamics of a
articular ecosystem. For example, Pettifor et al. (2000) created an
rtificial environment representation whereby ten sites were cre-
ted to represent the principle wintering regions of the brent goose
Branta bernicla) population. As a means of simplicity, the ten sites
ere placed in a straight line equidistant from one another, with the
istance between the sites approximately equal to the average real-
orld distance between neighbouring areas. Behavioral rules were

mplemented to predict the response of migratory populations
o environmental change in a year-round and spatially-explicit

anner. Railsback and Harvey (2002) also utilized an artificial envi-
onment in their analysis of habitat selection rules for salmonids.
tream reaches were modeled in two dimensions using a rectan-
ular grid of cells of varying size that maintained modeled depth,
elocity, benthic food, and drift food, while tracking which cell
ach fish occupies. Habitat selection objectives were tested to see
hether or not the modeled fish could reproduce patterns of habi-

at selection observed by real fish. Also using an artificial approach,
ang and Grimm (2007) created a 10,000 hexagonal cell artificial

nvironment with grassland, hedgerow, and cereal crop cell val-
es. In this study, food resources of each cell were allowed to vary
calculated from previous empirical studies), as well as the size of
ome ranges to determine the impact of home range dynamics on
model population of common shrew (Sorex araneus).

Choosing either a real-world or artificial-environment rep-
esentation for use in an ABM is dependent on the type of
nvestigation, since either choice has potential benefits and draw-
acks. A real-world representation allows the researcher to closely
imic the actual conditions existent in the ecosystem under study.
owever, the availability of data is not always consistent and often
omes from a variety of sources, each with its own standards, for-
ats, and scale. Conversely, an artificial representation is often

impler to create; however, the lack of real-world representation
ill limit the applicability of the model to answering questions
ertaining to specific areas of concern.

.2. Cell or object

In addition to being real-world or artificially-created, the way
hat the environment is represented in ABMs applied to wildlife
cology and management can also be characterized as either cell-
ased or object-based, corresponding roughly to continuous-field
nd discrete-object conceptual models of geography, respectively
Goodchild, 1989). The debate between these alternative modeling
iews had been persistent in the GIS literature for the last 20 years,
ostly because they represent different perspectives of reality.

hoosing the appropriate data model for environment representa-
ion is critical, since it dictates how the spatial database is presented
o the user and therefore how the user judges its empirical truth
Goodchild, 1992). Unfortunately, the representation of the envi-
onment is often driven by data availability and convenience, rather
han through an understanding of the geographic phenomena being
epresented and the processes that created them.

The majority of the wildlife ecology and management ABM lit-
rature uses the cell-based spatial representation of environment,
ince it allows for simple computation of animal movement and
ehavior, introduces no area-related bias of selection, and conforms
o many widely available environmental data formats (remote

ensing, digital elevation models, etc.). For example, Rands et al.
2004) created a two-dimensional grid of square cells based on a
orus for the investigation of simulated individual behavior and its
ffects on group behavior and foraging success. A set number of cells
SEED) were randomly chosen, from which the cells within a ran-
lling 222 (2011) 1544–1556

domly chosen distance were assigned a randomly chosen amount
of energy. An individual’s decision to move to a new cell or to rest
was made based on its energy reserve level, the level of energy
provided by the cell, and the proximity of neighbours. Hancock
and Milner-Guilland (2006) also utilized a cell-based environment
representation to investigate density-dependent habitat selection
theory for foragers with limited knowledge of local resources,
which they refer to as a map lattice model. In this lattice, each cell is
assigned a certain resource level and age, while movement to a cell
is determined on the basis of the perceived resource level in each
direction. Also using a cell-based representation, Hovel and Regan
(2008) created an environment whereby cells represented areas of
the sea floor, classified as seagrass patch interior, seagrass patch
edge, and matrix. Fragmentation through different spatial configu-
rations of these classified cells was used to investigate how seagrass
habitat fragmentation and loss, prey mobility, and prey and preda-
tor behavior influence predator–prey interactions. Further, Musiani
et al. (2010) used a cell-based representation of the environment
through several spatial datasets, including elevation, aspect, slope,
land cover, and rasterized road and trail networks. The authors
combined these spatial datasets with cell-based resource selection
functions (RSFs) for elk (Cervus elaphus) and grizzly bears (Ursus arc-
tos), human presence data, and cognitive wolf (Canis lupus) agents
to study how humans shape wolf behavior in Banff and Kootenay
National Parks, Canada. In a novel investigation using a grid-based
representation of environment, Robinson and Graniero (2005) used
a fuzzy membership function to model the likelihood that a grid cell
is reached by an eastern gray squirrel (Sciurus carolinensis), given a
particular starting point.

Although less abundant, there are examples from the litera-
ture where a vector-based approach is used for the environment
representation in ABMs for wildlife ecology and management. For
example, Ahearn et al. (2001) defined a basic vector coordinate
space within which tiger (Panthera tigris) agents moved about
and interacted with prey. Similarly, Grosman et al. (2009) used
vector-based forest inventory maps, land-cover polygons, and salt
pool locations in their model to assess the possibility of reducing
moose (Alces alces)-vehicle collisions. Metsaranta (2008) also used
a vector-based forest inventory that included 12 different forest
types in their model assessing the factors associated with space
use of woodland caribou (R. tarandus).

Both cell-based and object-based representations of envi-
ronments have their advantages and disadvantages. Cell-based
representations generally come from remote sensing image prod-
ucts and are often post-processed into information classes that
are more beneficial to modeling than basic spectral information.
The proliferation of remote sensing data products in recent years
has lead to an abundance of data sources, and thus cell-based
information is often easy to come by. However, cell-based envi-
ronments typically require large amounts of data storage, and can
cause computational problems related to computer memory capac-
ity, particularly when dealing with large areas. Resultant from an
investigation of the representation of environment in the con-
text of individual-based modeling, Bian (2003) believes that the
cell-based representation (which she refers to as a regular-grid
data model) is advantageous for modeling an environment that is
heterogeneous and dynamic. Conversely, the object-based repre-
sentations of an environment typically take up less storage space,
making some computations more efficient. This equates to faster
model simulations and larger areas of coverage, given a fixed set
of resources. However, an object-based environment representa-

tion will also ensure that available habitat is of unequal size and
thus more critical thought needs to be put into the development
of animal-movement rules. Bian (2003) believes that the strength
of object-based (which she refers to as a patch model) environ-
ment lies in its explicit between-feature topology and is best suited
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or modeling projects that require a clear identification of land-
cape features, spatial relationships between them, and a rich set
f attributes associated with the features.

.3. Static or dynamic

ABMs designed for wildlife habitat-selection generally have a
tatic environment, indicating that the environment stays the same
hile interactions between agents within that environment are

ccurring through time. This is indicative of the focus of most mod-
ls being set on how animals perceive their landscape, and how
ehavior leads to the emergence of overall patterns. For example,
itt et al. (2003) defined a static environment in their model of
erritoriality and social structure of Canid populations. Railsback
nd Harvey (2002) also defined a static environment with a con-
tant production rate of benthic food availability in their analysis of
abitat selection rules. However, some of these models also incor-
orate a changing environment as a key element that influences
nimal behavior. For example, Duriez et al. (2009) modified the
nvironmental variables of temperature and growing-degree days
or each year between 1991 and 2004 to assess likely decision rules
or pink-footed goose (Anser brachyrhynchus) migration departure
n Europe. More simply, rules can be given to agents to not return
o previously visited areas, under the assumption that resources
here have recently been depleted. Grosman et al. (2009) incorpo-
ated a simple rule into the moose agent’s repertoire that if the
gent selected a previously visited polygon, the selection process
as to be repeated until a new polygon was chosen.

Static-environment representations are best utilized when the
esire is to use the ABM to investigate the emergent properties that
riginate from the local interactions among agents in a given envi-
onment. However, when a researcher wants to isolate the effect
hat a changing environment might have on the behavior and inter-
ctions of animal agents, then a dynamic representation is more
uitable.

.4. Integration of biotic and abiotic factors

In addition to the simple spatial location and extent that an
gent inhabits, the representation of the environment in habitat-
election ABMs can also be more elaborate. The environment in
hese cases can be identified as a set of resources available to the
gent, occurring as either biotic or abiotic factors. Biotic factors
re those resources that can be considered living organisms, exam-
les of which may be food resources, potential mates, humans, etc.
hese biotic factors are generally represented as a field of cells, cal-
ulated by previously defined functions. For example, Cramer and
ortier (2001) used density maps of white-tailed deer (Odocoileus
irginianus) (food resource) and human population (disturbance) as
iotic factors in their model of panther (Puma concolor coryi) move-
ent in response to human attributes on the landscape. Similarily,

anarek et al. (2008) created a grid-work of cells, each of which was
scribed the amount of available biomass for a population of barna-
le geese (Brant leucopsis) to assess foraging behavior in a changing
nvironment. However, biotic factors of environment can also be
iscrete objects. For example, Ahearn et al. (2001) defined spatial
atabases of points representing densities of wild and domestic
rey for input into their ABM for simulating tiger (P. tigris)/human

nteraction in multiple-use forests. These biotic factors can also be
ither static or dynamic, depending on how important the changing
f resources is to the model. However, once an object-based envi-

onmental biotic factor becomes dynamic, i.e., situated in space and
ime, it begins to take on the characteristics of an agent itself, albeit
primitive one.

Abiotic factors are those resources that can be considered non-
iving organisms, such as land cover, elevation, temperature, water,
lling 222 (2011) 1544–1556 1549

etc. These factors are less common than environmental biotic fac-
tors; however some models do incorporate them and they can take
the form of either fields of cells or vector-based objects. For exam-
ple, Kristiansen et al. (2009) used vector-based vertical profiles of
temperature and turbulence as input into a bioenergetics model
for assessing habitat selection and growth-survival tradeoff of lar-
val cod (Gadus morhua). Conversely, environmental abiotic factors
of elevation and topography were represented in a grid of cells by
Alderman and Hinsley (2007) to study the effect of topography on
dispersal patterns of Eurasian nuthatches (S. europaea). The use of
both biotic and abiotic factors is essential if emergent properties
are sought from the local interactions of wildlife agents in a realistic
and complex ecosystem.

4. Animal behavior

One of the key concepts in ecology is the continual adaptation
and change in state of animals in response to internal and external
conditions (Zhivotovsky et al., 1996; Roff, 2002). The decision rules
that the individual animal uses are best described as being based
on the optimization of adaptive behaviors. This optimality paradigm
explores the relative efficacy of different strategies in optimiz-
ing some particular fitness currency (e.g., energy gain, survival, or
reproduction) over ecological or evolutionary time frames (Nathan
et al., 2008). An important differentiation in the literature occurs
between direct fitness-seeking and indirect fitness-seeking adap-
tive traits in ABMs. Direct fitness-seeking adaptive traits are those
that explicitly incorporate the fitness consequences of alternative
adaptive behaviors for an individual, whereas indirect fitness-
seeking adaptive traits are those that exist in real-world organism
but that are harder to link to fitness directly (Grimm and Railsback,
2005).

4.1. Direct fitness-seeking traits

The adaptive behaviors produced by direct fitness-seeking traits
are the most common found in the ABM literature and include,
but are not limited to, habitat selection, foraging, and reproduc-
tion. Habitat selection is considered a direct fitness-seeking trait,
widespread in wildlife ecology and management ABMs, because
animals not only travel between habitat patches, but also live, feed,
and breed in them. Therefore, the criteria an animal uses to assess
its habitat and the requirements needed to make an adaptive choice
will have direct consequences on its fitness. Kanarek et al. (2008)
incorporated habitat selection in their investigation of environ-
mental fluctuations on a barnacle geese (B. leucopsis) population in
Helgeland, Norway. In their model, geese choose unoccupied habi-
tat according to their rank in the population-structured dominance
hierarchy, their memory of previously visited sites in past years,
past reproductive success, inherited genetic influence towards site
preference, and knowledge of the available biomass density. Grand
(2002) also incorporated habitat selection in her study on the sim-
ulated effect of alternative forms of competition and predation
on the process of habitat selection. Two habitat types were used,
along with exploitative and interference competition types and fre-
quency dependent predation types to describe that the assumed
forms of predation and competition result in very different pre-
dicted patterns of habitat selection. Grossman et al. (2009) further
incorporate habitat selection in their investigation of salt-pool

removal and displacement and its effect on reducing moose-vehicle
collisions in Quebec, Canada. In their model, moose have to choose
between habitats based on five parameters: food quality, cover
quality, minimal slope, proximity to water bodies, and streams, and
proximity to roadside salt pools.
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Foraging behavior (searching for food resources) is a type of
abitat selection and is considered a direct fitness-seeking trait
ince an optimization of foraging will lead to higher energy lev-
ls at the lowest cost to itself and thus better reproductive fitness.
oraging has been the focus of several studies, in particular the
evelopment of optimal foraging strategies for wildlife species. For
xample, Nonaka and Holme (2007) investigated the joint effects
f patch clumpiness and habitat productivity on the maximum
et energy intake of a simulated forager through the use of the
arginal value theorem outlined by Charnov (1976). Rands et al.

2004) also looked at foraging strategy, in particular the emphasis
hat the individual puts on protective herding versus individual
oraging behavior, with the decision being based on the energy
eserves of the individual and the proximity and actions of its neigh-
ours. Goss-Custard and Stillman (2008) also incorporated the
ptimization of foraging in their model that assessed the impact of
nvironmental change on a population of European oystercatchers
Haematopous ostralegus) in southwest England. The study sought
o understand the underlying processes behind starvation func-
ions of oystercatchers through adaptive behaviors that balanced

eeting energy demands with individual competitive abilities that
epended on the interference-free intake rate and the susceptibility
f interference.

Reproduction is the most obvious direct-fitness seeking trait,
ince the results of reproduction are the main goal of fitness-
eeking individuals. It is not explicitly included in a model unless
he emergent properties of successive generations of reproductive
uccess are integral to the research question being addressed. For
xample, Stephens et al. (2002) incorporated the explicit repre-
entation of reproduction in their study on the complexity and
opulation prediction capability of a model of alpine marmots
Marmota marmota). The model was used to predict the effect of
ensity dependence on population growth and dispersal patterns
ver a 1000-year period in order to properly address the emer-
ent phenomena. Wang and Grimm (2007) also explicitly included
eproduction in their investigation of home-range dynamics and
opulation regulation of the common shrew (S. araneus). In this
tudy, the authors incorporated several reproductive attributes,
ncluding: start/end of breeding season for both males and females,
ime lag before females become fertile, gestation length, lactation
ength, sex ratio at birth, litter size, and the time it takes for off-
pring to reach sexual maturity, which lead to emergent properties
f home range size of 50-year model periods.

.2. Indirect fitness-seeking traits

The adaptive behaviors produced from indirect fitness-seeking
raits are also common in literature, with the most prominent being
ispersal and migration. Dispersal, or moving away from a popula-
ion or parent organism, is an example of an indirect fitness-seeking
daptive trait, since the result of dispersal is difficult to link to
tness directly. Leaving a population or parent organism can be
purned by many causes including an increased competition for
esources or increased pressure from predation; however the deci-
ion to depart under these circumstances is not necessarily directly
inked to the reproductive fitness of the individual. The inclusion
f dispersal in wildlife behavior- and movement-based ABMs, like
ost indirect fitness-seeking traits, is often provided by empir-

cal data observation. For example, Kramer-Schadt et al. (2004)
eveloped a model to investigate the probability of dispersing
urasian lynx (Lynx lynx) reaching other patches in heteroge-

eous landscapes. The dispersal rules utilized in this study were
xtracted from general knowledge and dispersal movement analy-
is of Iberian Lynx (Lynx pardinus; Revilla et al., 2004). Dispersal can
lso be indirectly addressed, such as in the study by Conner et al.
2008), whereby individual coyotes (Canis latrans) were allowed to
lling 222 (2011) 1544–1556

transition to transients and move among a neighbourhood of terri-
tories without leaving the simulated area. This can be thought of as
quasi-dispersal and was meant to emulate the observed dynamics
of coyote structure whereby alpha individuals do not leave their
territory, and open territories are taken by individuals in neigh-
bouring populations.

Migration can be considered an indirect fitness-seeking trait
since the individual is following rules that cause them to migrate
with the idea that the probability of reproducing successfully is
highest if they migrate to previously beneficial and relatively dis-
tant locations. Of course, not all wildlife exhibit migratory behavior,
however examples of those that do can be found in the literature.
For example, Bennett and Tang (2006) investigated the migra-
tory behavior of elk populations in Yellowstone National Park. The
authors modeled the decision to migrate as a stochastic response to
the change in snow water equivalent (SWE), the possibility of bet-
ter forage at a distant location, and the energy differential between
moving and staying. The migratory behavior of birds has also
been studied. For example, Duriez et al. (2009) studied the behav-
ioral rules behind the migratory behavior of pink-footed geese
(Anser brachyrhynchus) between wintering grounds in Denmark
and breeding grounds in Svalbard, Norway. By comparing predicted
and observed departure dates, the most accurate predictions were
made by a combination of cues including: the amount of body
stores, date, and plant phenology. Decision rules changed over the
course of the migration, with external cues becoming decreasingly
important and time-related cues becoming increasingly important
as the geese approached their breeding grounds.

4.3. Multi-species interactions

While the main focus of this review is centered on the actions of
focal species in the context of scenario planning for critical habitat,
wildlife-management can also require the consideration of species-
species interactions at the community and/or ecosystem levels
(Root et al., 2003). Indeed, agent-based models of trophic ecology
have been developed, for example, to theoretically assess evolu-
tionary aspects of social behaviors (Charnell, 2008), to understand
the dynamics of community assembly (Giacomini et al., 2009), to
identify dynamically relevant organizational scales for predicting
community patterns (Schmitz, 2000), and to gain insight into fluc-
tuating population dynamics of individual species (Reuter, 2005).
In more applied studies, ABMs of trophic interactions have been
used to assess ecosystem effects of fishing (Shin and Cury, 2004),
and to examine the role of habitat fragmentation of predator–prey
relationships (Hovel and Regan, 2008). In these ABMs, the species
may be represented as cognitive or non-cognitive agents, depend-
ing on the intent of the researcher. For instance, in Musiani et al.
(2010), wolves (C. lupus), the cognitive agents, would respond to
the presence of non-cognitive competitor and prey agents, who in
turn, would appear and disappear in the environment at realistic
temporal and spatial patterns. ABMs, via their process overview and
scheduling procedures, can readily accommodate multiple species
whose life-history traits differ on temporal scales (e.g., masting of
trees vs. small mammal life spans) and spatial scales (e.g., dispers-
ing larvae vs. sedentary adults). Of note, however, is that careful
attention must be given to the updating/scheduling methodology
in multispecies interaction (i.e., asynchronous vs. synchronous;
Caron-Lormier et al., 2008). Nevertheless, ABMs are very versatile
in integrating various types of agents and their actions, and can
be well-suited to exploring complex wildlife-management issues

involving multispecies interactions.

Regardless of which fitness-seeking trait to model (as it depends
on the scope and intent of the research), and the number of
agent types to incorporate, adaptive behaviors remain an impor-
tant aspect in the study of ABMs of wildlife habitat selection and
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anagement. They can produce emergent system-level processes
hat allow one to ask ecological questions that extend beyond
he individual itself. Imposing system behavior by giving individu-
ls mechanistic, empirically-derived traits provides an alternative.
owever this might lead to the simple reproduction of reactive
bilities and behaviors observed in real systems without providing
he desired ultimate causations necessary to understand animal

ovements and habitat selection. This distinction is particularly
mportant for scenario planning, as the use of optimizing behavioral
trategies allows researchers the ability to predict how animals will
ost likely respond to novel changes in their environment, since

he underlying processes are consistent with evolutionary concepts
i.e., how animals will tradeoff fitness-maximizing behaviors and
nd an optimum).

. Animal-movement rules

Animal movement is often a response to short-term goals such
s reproduction, maintenance (including feeding), and survival
including escaping threats). It may also be shaped by longer-term
tness implications, such as avoidance of inbreeding and popula-
ion extinction (Holyoak et al., 2008). Movement is therefore an
daptive behavior that has a very important role. Most wildlife
pecies are mobile and try to improve their fitness by moving to
reas that have higher survival and reproductive success. Therefore,
he rules by which this movement is characterized in ABMs have
profound affect on the outcome of the model and influence the

ypes of research questions that can be investigated. Two types of
nimal-movement rule characterizations are apparent in the ABM
iterature: mechanistic and behavior-based. The following sections

ill focus on these animal-movement rules and provide specific
xamples; however, for a more thorough evaluation of animal-
ovement and agent-based modeling, we recommend Tang and

ennett (2010).

.1. Mechanistic

A mechanistic approach to animal-movement rules can be
onsidered a proximate explanation of how an animal moves, as
pposed to a robust, ultimate one. Mechanistic movement rule sets
re simple procedures that dictate movement behavior of an animal
ccording to a pre-determined mathematical model that mimics a
eactive response to local stimuli, if a reaction is included at all.
he most basic mechanistic movement rule is random walk the-
ry, which can be traced back to the irregular motion of particles
tudied by Brown (1828) and popularized by Pearson (1905) and
alkiel (1973). In random walk theory, the opportunities to the

nimal in terms of habitable space are all equal, i.e., an animal has
n equal probability of moving in any direction. Today, there are
everal variations of random walk theory for animal movement
resent in the literature. For example, Bennett et al. (2009) applied
correlated random walk movement strategy to all foraging ani-
als and recreationists in their investigation of wildlife response

o human disturbance. The correlated random walk strategy differs
rom random walk in that it involves a correlation between suc-
essive steps, which can also be called persistence (Patalak, 1953).
lderman and Hinsley (2007) also used a correlated random walk to
odel dispersing nuthatches searching for habitat as they traversed

cross a matrix. Musiani et al. (2010) used correlated random walk
s well to model wolf movement in an ABM designed to investi-

ate human–wolf interaction. A variation of the correlated random
alk, the correlated habitat-dependent walk, was used by Kramer-

chadt et al. (2004), whereby dispersal direction was dependent
n previous direction and local habitat quality as perceived by an
ndividual lynx.
lling 222 (2011) 1544–1556 1551

Another variant of the random walk is the biased random walk
movement strategy, which occurs when an animal movement path
contains a consistent bias in a preferred direction or towards a
given target. For example, Wiegand et al. (2004) used a biased
random walk to model dispersal of independent grizzly bears (U.
arctos), whereby movement to a new cell was directly propor-
tional to the attractiveness of the cell (based on habitat suitability
and the number and sex of the occupants), relative to that of the
other neighbouring cells. Movement in this model stopped when
a bear found an appropriate home range, which was determined if
the sum of the attractiveness of the current cell and eight neigh-
bouring cells exceeded a defined threshold. Conner et al. (2008)
also used a biased random walk to model transient coyote (Canis
latrans) movement among a neighbourhood of territories to emu-
late observed dynamics in coyote social structure. In this model, a
random focal territory was chosen and a focal neighbourhood was
observed for open alpha positions, which were filled with available
betas or transients (with a priority placed on age).

A Lévy flight (named after the French mathematician Paul Pierre
Lévy) is a scale-free type of random walk, where steps lengths are
not constant, but rather are derived from heavy-tailed probabil-
ity distributions (Viswanathan et al., 1996). A variety of different
organisms have been found to follow a Lévy distribution of flight
lengths or times, from microzooplankton (Levandowsky et al.,
1988) to sharks (Humphries and Sims, 2009). The use of Lévy flights
is not as prevalent in the literature as are other variations of random
walk. However Gauestad and Mysterud (2005, 2006) implemented
a truncated Lévy flight algorithm (Mantegna and Stanley, 1994) to
express population kinetics in a multi-scaled framework, whereby
a model animal is able to relate to its habitat over a range of
spatiotemporal scales through parallel information processing. In
addition, Mouissie et al. (2008) witnessed an approximate Lévy
flight as the emergent grazing movement from the outcome of opti-
mal foraging in a heterogeneous environment, further indicating
its usefulness for habitat-selection ABMs in wildlife ecology and
management.

The decision of which mechanistic movement algorithm to use
largely depends on the scale of movement. Typically, correlated
random walks are used for short- and middle-scaled animal move-
ment; animal paths involving large spatial or temporal scales are
reproduced using Lévy flights (Bartumeus et al., 2005). However,
continually emerging theoretical and empirical studies of animal
movement reflect an ongoing field of study, with new models being
developed to accommodate hierarchical, multi-scale and multi-
state movement data and processes (for a more thorough review,
see Schick et al., 2008). Their application in ABMs is eagerly antici-
pated.

5.2. Behavior-based

In contrast to a mechanistic approach, the behavior-based
approach leads to a more complex web of decisions, and the
responses of the animal to stimuli are often more multifaceted.
Important to this approach is the inclusion of the internal state
of the animal. For example, Stephens et al. (2002) incorporated an
ideal free, behavior-based rule of fitness optimization to allow state
transitions of alpine marmots (M. marmota) to be decided by an
evolutionary stable approach of maximizing an individual’s fitness.
Also important is a focus on the cognitive abilities of the individual.
For example, Gras et al. (2009) modeled predator and prey agents
in an evolving ecosystem using a fuzzy cognitive map (FCM) as

the behavior model, which allowed for the inclusion of a distinc-
tion between sensation and perception, the detection of paranoia
and stress levels, and the ability for memory of past experience.
In addition, the decision rules that feed this approach often come
from ecologically sensible rules consistent with evolutionary prin-
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iples (Berec, 2002), direct observation of animal species, or past
mpirical studies cited in the literature. For example, Filksen et al.
2007) developed an algorithm of behavioral rules for larval cod
Gadus morhua) when changing depth preference using ontogeny
nd size, internal condition (hunger), and daily light cycle, based
n the empirical studies done by Lough and Potter (1993) and Leis
t al. (2006).

The two basic animal-movement rules have both their
dvantages and weaknesses. Mechanistic rules are character-
zed by being unable to infer movement itself nor how the
rganism–environment interaction influences movement pro-
esses while behavior-based rules suffer from a lack of empirical
ata against which to validate the model. An amalgamation of
he two types of rules is best-suited for agent-based modeling
f habitat selection. Mechanistic-based rules are particularly use-
ul in the face of search uncertainties; when the heterogeneity
f the environment causes animals to have no information about
here targets are located (i.e., resource patches, mates, etc.), ran-
om search strategies may provide different opportunities to find
hem (Bartumeus et al., 2005). Incorporating behavior-based rules
nto movement decisions made by agents can further obtain better
ts to movement data, correlate behaviors with landscape features,
nd reveal how the environment can influence within-state move-
ents as well as switches between behavioral states (Schick et al.,

008).

. Memory and learning

Memory and learning are adaptive behaviors that are very
mportant for wildlife. Having an effective memory and being able
o learn quickly are attributes that will directly benefit the fitness
f an animal; therefore the way each is represented in an ABM is
rucial for a realistic and appropriate representation of the ecosys-
em under study. Bennett and Tang (2006) outlined two forms of
patial memory that are thought to lead to spatial knowledge and
hat are important for the fitness of wildlife: reference and episodic.
eference memory can be thought of as the map-like representa-
ion of the environment, which can be used for navigation (Bailey
t al., 1996). Kanarek et al. (2008) utilized reference memory in their
odel of barnacle goose (B. leucopsis) foraging through an increased

fficiency due to traditional foraging. An individual goose achieves
higher level of fitness if it returns to a traditional foraging area

nd remembers which foraging sites on which island it spend pre-
ious years in. As the goose ages and establishes dominance in the
ock, returning to past productive sites provides even more fit-
ess, thus utilizing its spatial (reference) memory. In contrast to
eference memory, episodic memory is sensory perceptual knowl-
dge of recent experience that is retained for short periods of time
Conway, 2002). Goss-Custard and Stillman (2008) used episodic

emory in their shorebird model, allowing foragers to remember
heir foraging success during a given number of previous steps. Gras
t al. (2009) also used episodic memory in their FCM model by not
llowing activation levels of agents to be reset, which translates
nto all previous states of an agent during its life participating in
he computation of its current state, therefore giving the agent a

emory of its own past states. It is beneficial to utilize both ref-
rence and episodic memory if realistic representation of animal
emory is desired, since many animal species display the usage of

oth.
The repetition of events and experiences, combined with an ani-
al’s ability to store and recall that information, are required in
rder for an animal to learn. Thorpe (1963) identifies four types
f animal learning that are still acknowledged today (although the
eparation between each type is not universally recognized): habit-
ation, associative learning, latent learning, and insight learning.
lling 222 (2011) 1544–1556

Habituation learning takes place when repeated exposure to an
event or experience leads to a reduction in the response to an event.
Associative learning occurs when something is learned through
association with a separate, pre-occurring element. Latent learn-
ing is the type of learning whereby a response is not immediately
apparent. Insight learning can be described as the rapid apprehen-
sion of solutions to problems.

Although considerable research has gone into animal learning
theory, reproducing and representing different learning types are
a challenge in any modeling exercise, including ABMs. Neverthe-
less, some studies have attempted to mimic animal learning, with
the most promising representation likely being artificial neural
networks (ANNs), which attempt to simulate the structure and
functional aspects of the neural networks that exist in biological
organisms (Bishop, 1995). For example, Okunishi et al. (2009) used
an ANN to model the decision to migrate from input environmen-
tal variables in their ABM to investigate spawning migration and
growth of Japanese sardine (Sardinops melanostictus) in the west-
ern north Pacific. Another animal learning representation approach,
reinforcement learning (RL), is concerned with how an agent ought
to take action in an environment so as to maximize its long-term
reward, or fitness. The basic principle of RL is learning how to map
situations to actions so as to maximize a numerical reward signal,
and includes both trial and error search and delayed reward charac-
teristics (Sutton and Barto, 1998). Butz and Hoffmann (2002) used
RL in their ABM to investigate the role of anticipations in controlling
rat (Rattus norvegicus) behavior in an anticipatory learning classi-
fier system. In terms of spatially explicit learning, Hebbian learning
has shown promise. It originates from Hebb’s (1949) postulate:
when two neurons are activated at the same time, the associa-
tion between them is enhanced. Similar to ANNs, the associations
are representative of synaptic connections and are modeled as
weighted links. When combined with inhibition mechanisms that
can decrease link weights given the absence of stimuli, a differentia-
tion of weights is possible and thus reinforcement and penalization
can be mimicked. Cruse and Hubner (2008) use Hebbian learning
in their model investigating self-organizing memory and the pro-
cess of active learning of landmarks used for navigation in homing
species.

ANNs have the benefit of mimicking the neural systems exis-
tent in biological organisms and can be trained directly on data
with hundreds or thousands of inputs, showing their great poten-
tial when it comes to the inclusion of memory in to wildlife habitat
selection ABMs. However, they often require considerable parame-
ter tweaking and retraining (which is computationally expensive).
RL has the benefit of dealing with feedback systems that maximize
fitness, which provides a more flexible framework than others.
However, some algorithms for RL can suffer from the amount of
time required to learn an effective strategy. The advantage of Heb-
bian learning is apparent when it comes to an agent learning about
its environment, however it is less applicable when it comes to
learning a particular task. The use of one or several of these learning
algorithms is dependent on how well known the behavior, mem-
ory and learning of a particular organism that will be represented
in the ABM is.

7. Discussion

Agent-based models are a versatile tool, and as shown in this
review, have an important role to play in modeling animal behavior

and movements for wildlife-management objectives. They repre-
sent the synthesis of dynamic optimization models, movement
models, and land-use models. They can accommodate individual
behaviors, spatial systems, and dynamic changes in habitat, all of
which can then emerge into wildlife population-level processes
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f resilience, persistence and patterns of abundance over space
nd time. The studies showcased in this review concern studies
f animal habitat selection and use, as these traits are essential
or the delineation and management of critical habitats. The mod-
ls can be categorized according to four broad criteria based on
hether the environmental representation is artificial or real (i.e.,

n actual coordinate system), and whether animal movements
re mechanistic or behavior-based (Table 1). While the objec-
ives of these studies ranged from elucidating animal population
emographics, fitness consequences of individual behaviors, to the
xpress purpose of wildlife-management, we found a single exam-
le with a wildlife-management mandate that was also a spatially
xplicit, behavior-based ABM (Goss-Custard and Stillman, 2008).
e believe this type of ABM to be the most beneficial for modeling
ildlife habitat selection for two reasons: to establish a more accu-

ate representation of the animal’s movement ecology, and for a
ore insightful approach to conservation-based scenario planning.
The ABM specific for wildlife-management of critical habitats

hould include a dynamic, cell-based and real-world environment
epresentation that includes both abiotic and biotic factors, both
irect and indirect fitness-seeking traits, a combination of mech-
nistic and behavior-based movement rules, as well as proper
epresentation of memory and learning. A dynamic environment
epresentation is important because wildlife continually adapt to
hanging environmental conditions, whether those changes come
rom seasons, anthropogenic influences or by the wildlife them-
elves as they interact in their environs. An important parsimonious
aveat however, is that if the reasoning for the investigation does
ot specifically require the environment to change, then it should
emain static (e.g., the researcher can vary the biotic elements,
nstead). A dynamic environment for the sake of being dynamic

ill not add anything to the management scenario and may lead to
nnecessary model complexity.

The use of cell-based environment representation is advanta-
eous because it is computationally simple when compared to the
bject-based alternative. Representing the environment as a grid
llows for the agents to move to new cells in accordance with
he time step of the ABM. Conversely, the use of vector objects
ould require the creation of a distance variable for the agent, and
irectional bias would have to be accounted for when moving in
reas with different sizes of patches. Objects certainly permit the
nclusion of geometry and variable geographic representation of
nvironmental phenomena; however, if these attributes are not
ecessary for the investigatory purpose of the ABM and the pre-
ise location of the agent is not needed, then it is advantageous to
se a cell-based environment representation over an object-based
ne.

The inclusion of both biotic and abiotic factors is essential in
abitat-selection ABMs because wildlife use both of these factors to
ake decisions regarding fitness. The relevance of biotic factors for
ildlife agents are straightforward: factors such as food resources
irectly impact decisions and movement. An animal agent will seek
ut the most abundant food resources and move to them, as long
s it can perceive those resources and there are not any other neg-
tive impacts outweighing the benefits of moving. Abiotic factors
re just as important, however. For example, an abiotic factor such
s topography would have an impact on the amount of energy used
nd therefore, as long as the wildlife agent can perceive the change
n elevation it will use this abiotic factor in its decision-making
rocess to achieve the highest level of fitness.

Much like biotic factors, direct fitness-seeking traits are obvi-

usly beneficial when it comes to the use of ABM in wildlife
cology and management. The use of habitat selection and foraging
daptive behaviors directly affect the fitness of the individual and
herefore they are integral to the model. Indirect fitness-seeking
raits such as dispersal and migration are also important traits, as
lling 222 (2011) 1544–1556 1553

they can play a major role in determining the fate of individuals.
Not all wildlife migrate or disperse, however, and some behaviors
may be more integral than others to the survival of the individual,
so it is important to evaluate the purpose, the temporal and spatial
scales of the model, and the appropriate fitness measure of the real-
world animal when selecting which adaptive behaviors to model
in an ABM.

A combination of mechanistic and behavior-based movement
rules is best suited for habitat-selection ABMs. Accounting for
the internal state (i.e., the organism’s physiological state and its
short-term motivation in relation to its long-term goals) of the
wildlife agent that is characteristic of the behavior-based move-
ment algorithms is essential, since it maintains a currency that can
be constantly evaluated and referred to as a level of fitness. This
closely mimics true animal internal evaluation that dictates behav-
ior, which is desired. However, there may be instances where the
exact behavior information for an animal is not known, or a lack
of empirical data does not allow for the full use of a behavior-
rule based approach to movement. In these instances, the use of
mechanistic movement models such as correlated random walk
or correlated habitat-dependent walk are useful, as long as they
closely mimic true movement of the wildlife under study.

Proper inclusion of memory and learning is essential for repro-
ducing the behavior of cognizant and adaptive wildlife. A species’
memory of its habitat, especially when pertaining to food resources,
will have a profound effect on its energy intake and thus its fitness.
Memory of potential sources of danger or locations of potential
mates will also have an effect on fitness and thus if a wildlife species
encounters resources predictable in time and/or space, memory
may be an important trait to include in the ABM. Learning will
only come about if the wildlife agent is capable of memory; how-
ever, many wildlife species exhibit learning capabilities and the
outcome of management scenarios can be significantly altered if
those species use their learning capabilities to adapt to changing
conditions.

The characteristics of habitat-selection ABMs deemed essen-
tial in this review for the management of wildlife critical habitat
is a shared viewpoint held in the broader study of movement
ecology. A recent call for a more conclusive understanding of the
causes, patterns, mechanisms, and consequences of wildlife move-
ment has emphasized these traits as being central to managing and
restoring degraded landscaped and their occupants (Nathan et al.,
2008). The general consensus is that movement paths of wildlife
result from the dynamic interplay of four basic components: the
internal state of the organism, its motion capacity (i.e., the ability
and choice to move under its own locomotion), and its navigation
capacity (the ability to orient and navigate, including the implied
use of memory or inherited capacity). The fourth factor is the
external environment, since it can modify animal movement either
through landscape attributes, the distribution of resources and dif-
fering environmental conditions, and other organisms (Holyoak
et al., 2008; Revilla and Wiegand, 2008). The ABM we advocate can
include all of these variables, and, more importantly, is capable of
accommodating how all four components interact to produce the
emergent movement patterns critical to determining how wildlife
populations may respond to landscape change.

Insight into how animals may respond to future changes in their
landscape is a relatively unexplored advantage of ABMs under the
tenets of scenario planning. While the future of an ecosystem can-
not be perfectly predicted, it is partially decidable, and desirable
pathways of development can be encouraged through appropriate

regulations and policies. Therefore, the objective of the modeling
exercise in scenario planning is not prediction but rather interactive
learning to identify desirable options based on various manage-
ment scenarios (Marceau, 2008). In the successful design of an
ABM one can formulate questions about potential future conditions
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nd run simulations to observe what outcomes might be possi-
le. The focus here is not on predicting the future, but rather on
xploring possible futures, leading to an enhanced understanding
f the system under investigation. As highlighted in the wildlife-
anagement studies presented in this review, ABMs can be used

o assess: the differential effects of proposed predator steriliza-
ion versus removal (Conner et al., 2008); the long-term success
f reintroduction efforts potentially impeded by road mortality and
abitat connectivity (Kramer-Schadt et al., 2004); the sustainability
f an endangered species given the density of prey and the attitudes
nd behaviors of people (Ahearn et al., 2001); habitat selection
nd associated population demographics of animals under pre-
icted future human development and habitat loss (Cramer and
ortier, 2001; Goss-Custard and Stillman, 2008; Stephens et al.,
002); impacts of different management policies on the reduction
f road-side vehicular mortalities of wide-ranging animals (Gros-
an, 2009); and potential park designs on the nesting success of

ird populations (Bennett et al., 2009). Incorporating both adaptive
ehaviors and animal-movement ecology in a changing landscape
ith possible alternative futures is a mostly untapped potential of
BMs that should be a focus for further model developments.

.1. Beyond the design of ABMs

Agent-based modeling has become a well-established and
ccepted methodology, and we have explored the components of
n ABM we believe suitable for wildlife ecology, and specifically,
onservation planning for critical habitat management. Beyond the
undamental design of the ABM, further attributes concerning data
eeds, model calibration and evaluation, and communication are
orth mentioning briefly. Data types commonly used in calibrat-

ng and in evaluating ABMs of habitat use are movement-path data,
emographic data (birth rates, survival, etc.), and expert knowl-
dge. The chosen parameters typically have direct biological and/or
volutionary significance and are often closely related to empirical
nvestigations, thus limiting the range of plausible values consider-
bly (Breckling et al., 2006). These data are also often incorporated
nto a pattern-oriented modeling (POM) approach to increase the
igor and comprehensiveness of the modeling procedure, thereby
ubjecting the model to the stringencies of traditional natural
cience. This protocol, first introduced by Grimm (1994) and sub-
equently expanded on by Railsback and Harvey (2002), Wiegand
t al. (2003) and Grimm et al. (2005), is based on the assump-
ion that patterns are the defining characteristics of a system and
re indicators of essential underlying structures and processes.
OM requires the researcher to begin with a pattern found in the
eal system, posit hypotheses to explain the pattern, and then
evelop predictions which can be tested. By observing multiple
atterns at different hierarchical levels and scales, one can sys-
ematically optimize model complexity, parameterize the model,
nd simultaneously make it more general and testable (Grimm and
ailsback, 2005). POM has been used extensively in recent studies
e.g., Railsback et al., 2002, 2005; Kramer-Schadt et al., 2004; Revilla
t al., 2004; Petersen et al., 2008; Topping et al., 2010a; Chion et al.,
n press), demonstrating its utility in addressing model complexity,
nknown data requirements, variable parameterization, general-

ty, and standard theories for model development.
An effective means of communicating the model is another

mportant criteria for ABMs. A standard communication mecha-
ism to present ABMs is the overview design concepts and details
ODD) protocol (Grimm et al., 2006). The purpose of the ODD pro-

ocol is to provide a structure for presenting the information about
n ABM in the same sequence, no matter the scope, structure,
omplexity, and implementation details of the ABM. The struc-
ure of the ODD protocol has context and general information first
overview), followed by strategic considerations (design concepts)
lling 222 (2011) 1544–1556

and finishing with technical details (details). With examples of the
ODD protocol becoming more apparent in the literature (e.g., Polhill
et al., 2008 and Topping et al., 2010b), it has now become easier
for others to follow the protocol in the absence of advice of its
developers, and easier to see where changes are needed to clar-
ify requirements, facilitate the model description process, and fit
the description needs of different models (Polhill et al., 2008).

Lastly, from a technical viewpoint, ABM software has greatly
improved in recent years, from initial models that required exten-
sive programming skills, to software packages that are accessible to
researchers in multiple fields (Railsback et al., 2006). More recently,
ABM software programs have also improved their ability to rep-
resent space through integration with GIS. In sum, agent-based
modeling is a continually developing field of research, charac-
terized by improving methodology, refinement of tools, targeted
applications, increasingly concise and comparable communication
of models, and evidence of increased experience of the research
community (Heckbert et al., 2010).

8. Conclusion

The purpose of this review was to showcase the strong potential
of ABMs as habitat models in wildlife-management with respect to
conservation planning of critical habitats. ABMs can be useful to
scientists, managers, decision-makers, and even the general public
in providing a conceptual and computational framework to simu-
late the behavior of environmental systems under various scenarios
and at multiple scales, to reproduce aspects of the human decision
process and the feedback mechanism between natural and human
systems, and to help identify appropriate management strategies
(Marceau, 2008). While we perceive ABMs that encompass a multi-
disciplinary approach as the most complete and promising habitat
models for ecological research, the full potential of agent-based
modeling still remains to be fulfilled; and more advanced con-
cepts required to capture the complexity of movement ecology in
dynamic environments still need to be incorporated within ABM
architectures.
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